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Hamiltonian and Path Integral Formulations of the
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The Hamiltonian and path integral formulations of the Born–Infeld Nambu–Goto D1-
brane action with and without a scalar dilation field are investigated under appropriate
gauge-fixing.
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1. INTRODUCTION

The Dirac–Born–Infeld Nambu–Goto (DBING) and the Born–Infeld
Nambu–Goto (BING) actions are amongst the most important actions in the string
theories (Abou and Hull, 1997; Aganagic et al., 1997; Brink and Henneaux, 1988;
de Alwis and Sato, 1996; Johnson, 2000; Kulshreshtha and Kulshreshtha, in press,
2003a,b; Luest and Theisen, 1989; Maharana, 2000; Mukhi, 1997; Schmidhuber,
1996; Tseytlin, 1996). The Hamiltonian and path integral formulations of the first
action has been studied by the present authors for the case of the D1-brane in
(Kulshreshtha and Kulshreshtha, 2003a, 2004). The second action namely, the
BING action is important in its own right for many reasons and has been studied
from different points of view in the literature (Abou and Hull, 1997; Aganagic
et al., 1997; Brink and Henneaux, 1988; de Alwis and Sato, 1996; Johnson,
2000; Luest and Theisen, 1989; Maharana, 2000; Mukhi, 1997; Schmidhuber,
1996; Tseytlin, 1996). In the present work, we study the Hamiltonian and path in-
tegral formulations (Dirac, 1950; Gitman and Tyutin, 1990; Kulshreshtha and
Kulshreshtha, in press, 2002a,b, 2003a,b; Kulshreshtha et al., 1993a,b,c,d,e,
1994a,b; Senjanovic, 1976) of this BING action describing the D1-brane
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(sometimes also called the D-string) with and without a scalar dilation field ϕ

under appropriate gauge-fixing conditions (GFC’s).
In the next section, the action is considered without the dilation field and in

Section 3, the action is studied in the presence of a scalar dilation field ϕ. The
Hamiltonian and path integral quantizations are studied in both the cases under
appropriate canonical gauge-fixing in the absence of boundary conditions (BC’s).
Finally the summary and discussion is presented in Section 4.

2. THE ACTION WITHOUT A DILATION FIELD

We consider the (bosonic) BING action describing the propagation of a D1-
brane in a d-dimensional flat background (with d = 10 for the fermionic and
d = 26 for the bosonic D1-brane) defined by (Abou and Hull, 1997; Aganagic
et al., 1997; Brink and Henneaux, 1988; de Alwis and Sato, 1996; Johnson,
2000; Kulshreshtha and Kulshreshtha, in press, 2003a,b; Luest and Theisen, 1989;
Maharana, 2000; Mukhi, 1997; Schmidhuber, 1996; Tseytlin, 1996):

S1 =
∫

L1 d2σ (1a)

L1 = (−T )[− det(Gαβ + Fαβ)]
1
2 (1b)

= (−T )[− det(∂αXµ∂βXνηµν + Fαβ)]
1
2 (1c)

= (−T )[− det(∂αXµ∂βXµ + (∂αAβ − ∂βAα))]
1
2 (1d)

= [−T ][(Ẋ · X′)2 − (Ẋ)2(X′)2 − f 2]
1
2 (1e)

Gαβ = ∂αXµ∂βXνηµν ; Fαβ = (∂αAβ − ∂βAα) (1f)

ηµν = diag(−1,+1, . . . + 1); f = F01 = −F10 = (Ȧ1 − A′
0) (1g)

µ, ν = 0, 1, 2, . . . , (d − 1); α, β = 0, 1 (1h)

Ẋµ ≡ ∂Xµ

∂τ
; X

′µ = ∂Xµ

∂σ
; Ȧ1 ≡ ∂A1

∂τ
; A′

0 ≡ ∂A0

∂σ
(1i)

In the present work we would consider only the bosonic D1-brane with d = 26
(however, for the corresponding fermionic case one has d = 10 ). Here σα ≡ (τ, σ )
are the two parameters describing the world-sheet (WS). The overdots and primes
denote in general, the derivatives with respect to the WS coordinates τ and σ .
The string tension T is a constant of mass dimension two. Gαβ is the induced
metric on the WS and Xµ(τ, σ ) are the maps of the WS into the d-dimensional
Minkowski space and describe the strings evolution in space–time (Abou and
Hull, 1997; Aganagic et al., 1997; Brink and Henneaux, 1988; de Alwis and Sato,
1996; Johnson, 2000; Kulshreshtha and Kulshreshtha, in press, 2003a,b; Luest
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and Theisen, 1989; Maharana, 2000; Mukhi, 1997; Schmidhuber, 1996; Tseytlin,
1996). Here Fαβ is the Maxwell field strength of the U (1) gauge field Aα(τ, σ ). It is
important to mention here that the U (1) gauge field Aα is a scalar field in the target-
space whereas it is an α - vector field in the WS-space. Also, we are considering the
U (1) gauge field Aα , to be a function only of the WS coordinates τ and σ and not
of the target-space coordinates Xµ (Abou and Hull, 1997; Aganagic et al., 1997;
Brink and Henneaux, 1988; de Alwis and Sato, 1996; Johnson, 2000; Kulshreshtha
and Kulshreshtha, in press, 2003a,b; Luest and Theisen, 1989; Maharana, 2000;
Mukhi, 1997; Schmidhuber, 1996; Tseytlin, 1996).

Further the theory described by the action S1 is a gauge-invariant (GI) (and
consequently a gauge nonanomalous) theory possessing the usual three local
gauge symmetries given by the two-dimensional WS reparametrization invari-
ance (WSRI) and the Weyl invariance (WI) (Abou and Hull, 1997; Aganagic
et al., 1997; Brink and Henneaux, 1988; de Alwis and Sato, 1996; Johnson,
2000; Kulshreshtha and Kulshreshtha, in press, 2003a,b; Luest and Theisen, 1989;
Maharana, 2000; Mukhi, 1997; Schmidhuber, 1996; Tseytlin, 1996). The canonical
momenta obtained from L1 are

	µ := ∂L1

∂(∂τXµ)
= [−T/L][(Ẋ · X′)X′µ − (X′)2Ẋµ] (2a)

π0 := ∂L1

∂(∂τA0)
= 0 (2b)

E(≡ π1) := ∂L1

∂(∂τA1)
= [T/L][f ] (2c)

L2 = [
(Ẋ · X′)2 − (Ẋ)2(X′)2 − f 2

]
(2d)

∂τ ≡ ∂/∂τ ; ∂σ ≡ ∂/∂σ (2e)

where 	µ, π0 and E(≡ π1) are the canonical momenta conjugate respectively to
Xµ,A0, and A1. The theory described by S1 is thus seen to possess three primary
constraints:

ψ1 = π0 ≈ 0 (3a)

ψ2 = (	 · X′) ≈ 0 (3b)

ψ3 = [	2 + (E2 + T 2)(X′)2] ≈ 0 (3c)

Here the symbol ≈ denotes a weak equality (WE) in the sense of Dirac
(Dirac, 1950; Gitman and Tyutin, 1990; Kulshreshtha and Kulshreshtha, in press,
2002a,b, 2003a,b; Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976),
and it implies that these above constraints hold as strong equalities only on the
reduced hypersurface of the constraints and not in the rest of the phase space of
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the classical theory (and similarly one can consider it as a weak operator equality
(WOE) for the corresponding quantum theory) (Dirac, 1950).

The canonical Hamiltonian density corresponding to L1 is

Hc
1 = [	µ(∂τXµ) + π0(∂τA0) + E(∂τA1) − L1] (4a)

= [EA′
0] (4b)

After incorporating the primary constraints of the theory in the canoni-
cal Hamiltonian density Hc

1 with the help of Lagrange multiplier fields
u1(τ, σ ), u2(τ, σ ), and u3(τ, σ ), which we treat as dynamical, the total
Hamiltonian density of the theory could be written as

HT
1 = [

Hc
1 + u1ψ1 + u2ψ2 + u3ψ3

]
(5a)

= [EA′
0 + u1π

0 + u2(	 · X′) + u3[	2 + (E2 + T 2)(X′)2]] (5b)

We treat u1, u2, and u3 as dynamical.Also the momenta conjugate to u1, u2, and u3

are denoted respectively by pu1 , pu2 , and pu3 . The Hamiltons equations of motion
obtained from the total Hamiltonian

HT
1 =

∫
HT

1 dσ (6)

e.g., for the closed strings with the periodic BC’s are

+∂τX
µ = ∂HT

1

∂	µ

= [u2X
′µ + 2	µu3] (7a)

−∂τ	
µ = ∂HT

1

∂Xµ

= −∂σ [u2	
µ + 2X′µ(E2 + T 2)u3] (7b)

+∂τA0 = ∂HT
1

∂π0
= u1 (7c)

−∂τπ
0 = ∂HT

1

∂A0
= [−E′] (7d)

+∂τA1 = ∂HT
1

∂E
= [A′

0 + 2E(X′)2u3] (7e)

−∂τE = ∂HT
1

∂A1
= 0 (7f)

+∂τu1 = ∂HT
1

∂pu1

= 0 (7g)

−∂τpu1 = ∂HT
1

∂u1
= π0 (7h)
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+∂τu2 = ∂HT
1

∂pu2

= 0 (7i)

−∂τpu2 = ∂HT
1

∂u2
= (	 · X′) (7j)

+∂τu3 = ∂HT
1

∂pu3

= 0 (7k)

−∂τpu3 = ∂HT
1

∂u3
= [	2 + (E2 + T 2)(X′)2] (7l)

These are the equations of motion of the theory that preserve the constraints of
the theory in the course of time. Demanding that the primary constraint ψ1 be
preserved in the course of time one obtains a secondary constraint (with a Poisson
bracket (PB) being denoted by { , }p):

ψ4 = {
ψ1,HT

1

}
p

= [E
′
] ≈ 0 (8)

The preservation of ψ4 for all time does not give rise to any further constraints.
Similarly, the preservation of ψ2 and ψ3 for all time also does not yield any further
constraints. The theory is thus seen to possess only four constraints ψ1, ψ2, ψ3,
and ψ4. Also the first-order Lagrangian density of the theory is

LIO
1 = [

	µ(∂τXµ) + π0(∂τA0) + E(∂τA1) + pu1 (∂τu1)

+pu2 (∂τu2) + pu3 (∂τu3) − HT
1

]
(9a)

= [	2 + (E2 − T 2)(X′)2]u3 (9b)

The matrix of the Poisson brackets of the constraints ψi is seen to be a singular
matrix implying that the set of constraints ψi is first-class (Dirac, 1950; Gitman
and Tyutin, 1990; Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b;
Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976) and that the
theory described by S1 is a gauge-invariant (GI) theory. It is rather well known
that the theory described by S1 indeed possesses three local gauge symmetries
given by the two-dimensional WS reparametrization invariance (WSRI) and
the Weyl invariance (WI) (Abou and Hull, 1997; Aganagic et al., 1997; Brink
and Henneaux, 1988; de Alwis and Sato, 1996; Johnson, 2000; Kulshreshtha
and Kulshreshtha, in press, 2003a,b; Luest and Theisen, 1989; Maharana, 2000;
Mukhi, 1997; Schmidhuber, 1996; Tseytlin, 1996).

To study the Hamiltonian and path integral formulations of this theory under
gauge-fixing, we convert the set of first-class constraints of the theory ψi into a set
of second-class constraints, by imposing arbitrarily, some additional constraints on
the system called the gauge-fixing conditions (GFC’s) or the gauge constraints. For
this purpose, we could choose, for example, the set of GFC’s (Dirac, 1950; Gitman
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and Tyutin, 1990; Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b;
Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976):

ψ5 = ζ1 = X2 ≈ 0 (10a)

ψ6 = ζ2 = 	′ ≈ 0 (10b)

ψ7 = ζ3 = A1 ≈ 0 (10c)

ψ8 = ζ4 = A0 ≈ 0 (10d)

Corresponding to this choice of GFC’s, the total set of constraints of the theory
under which the quantization of the theory could, e.g., be studied becomes

ψ1 = π0 ≈ 0 (11a)

ψ2 = (	 · X′) ≈ 0 (11b)

ψ3 = [	2 + (E2 + T 2)(X′)2] ≈ 0 (11c)

ψ4 = E′ ≈ 0 (11d)

ψ5 = ζ1 = X2 ≈ 0 (11e)

ψ6 = ζ2 = 	′ ≈ 0 (11f)

ψ7 = ζ3 = A1 ≈ 0 (11g)

ψ8 = ζ4 = A0 ≈ 0 (11h)

We now calculate the matrix Mαβ(:= {ψα,ψβ}p) of the Poisson brackets of the
constraints ψi . The nonvanishing elements of the matrix Mαβ are obtained as:

M18 = −M81 = [−1] δ (σ − σ ′) (12a)

M25 = −M52 = [−2X′] δ (σ − σ ′) (12b)

M26 = −M62 = [−	] δ′′ (σ − σ ′) (12c)

M35 = −M53 = [−4	] δ (σ − σ ′) (12d)

M36 = −M63 = [−2X′(E2 + T 2)] δ′′ (σ − σ ′) (12e)

M37 = −M73 = [−2E(X′)2] δ (σ − σ ′) (12f)

M47 = −M74 = [−1] δ′ (σ − σ ′) (12g)

The matrix Mαβ is seen to be nonsingular implying that the corresponding set of
constraints ψi is a set of second-class constraints (Dirac, 1950; Gitman and Tyutin,
1990; Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b; Kulshreshtha
et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976). The determinant of the matrix
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Mαβ is given by

[‖ det(Mαβ)‖]
1
2 = [4Mδ′′(σ − σ ′) δ′ (σ − σ ′) δ2 (σ − σ ′)] (13a)

M = [	2 − (E2 + T 2)(X′)2] (13b)

The nonvanishing elements of the inverse of the matrix Mαβ (i.e., the elements of
the matrix (M−1)αβ) are

(M−1)18 = −(M−1)81 = δ (σ − σ ′) (14a)

(M−1)25 = −(M−1)52 = [−(E2 + T 2)X′/(2M)] δ (σ − σ ′) (14b)

(M−1)26 = −(M−1)62 = [	/(2M)]|σ − σ ′| (14c)

(M−1)35 = −(M−1)53 = [	/(4M)]δ (σ − σ ′) (14d)

(M−1)36 = −(M−1)63 = [−(X′)/(4M)]|σ − σ ′| (14e)

(M−1)45 = +(M−1)54 = [	E(X′)2/(4M)] ε (σ − σ ′) (14f)

(M−1)46 = +(M−1)64 = [−E(X′)2(X
′
)/(4M)]

|σ − σ ′| ε (σ − σ ′) δ (σ − σ ′) (14g)

(M−1)47 = +(M−1)74 = (−1/2) ε (σ − σ ′) (14h)

with the step functions ε(σ − σ ′) defined as

ε(σ − σ ′) :=
{+1, (σ − σ ′) > 0

−1, (σ − σ ′) < 0
(15)

and ∫
M(σ, σ ′′)M−1(σ ′′, σ ′)dσ ′′ = 18×8δ(σ − σ ′) (16)

Now following the standard Dirac quantization procedure in the Hamil-
tonian formulation (Dirac, 1950; Gitman and Tyutin, 1990; Kulshreshtha and
Kulshreshtha, 2004, 2002a,b; Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b;
Senjanovic, 1976), the nonvanishing equal WS time (EWST) Dirac brackets of
the theory described by the action S1 under the GFC’s ζi could be obtained easily
after a lengthy but straightforward calculation (Dirac, 1950) and are omitted here
for the sake of brevity.

It is important to recall here that the constraints of the theory represent only
the weak equalities in the sense of Dirac (Dirac, 1950; Gitman and Tyutin, 1990;
Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b; Kulshreshtha et al.,
1993a,b,c,d,e, 1994a,b; Senjanovic, 1976), as explained in the foregoing implying
that they are strongly zero only on the reduced hypersurface of the constraints
and not in the rest of the phase space of the (classical) theory (with a similar
weak operator equality holding for the corresponding quantum theory) and as a
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consequence of this the DB’s involving the gauge fields like Aα can indeed be
nonvanishing in principle (as is evident in the present case from the above results)
which would , however, become strongly zero on the reduced hypersurface of the
constraints of the theory described by the action in any case.

Further, in the canonical quantization of the theory while going from equal
WS time (EWST) Dirac brackets of the theory to the corresponding EWST
commutation relations one would encounter here the problem of operator ordering
(Gitman and Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c, 2002a,b,
2003a,b, in press; Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b, 1993d,e;
Maharana, 1983; Senjanovic, 1976) because the product of canonical variables
of the theory are involved in the classical description of the theory (like in the
expressions for the constraints of the theory) as well as in the calculation of the
Dirac brackets. These variables are envisaged as noncommuting operators in the
quantized theory leading to the problem of so-called operator ordering (Gitman
and Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b,
in press; Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Maharana,
1983; Senjanovic, 1976). This problem could, however, be resolved (Gitman and
Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in press;
Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Maharana, 1983;
Senjanovic, 1976) by demanding that all the string fields and momenta of the
theory are Hermitian operators and that all the canonical commutation relations
be consistent with the Hermiticity of these operators (Gitman and Tyutin, 1990;
Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in press; Kulshreshtha
et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Maharana, 1983; Senjanovic,
1976).

In the path integral formulation, the transition to quantum theory is made
by writing the vacuum to vacuum transition amplitude for the theory called the
generating functional Z1[Ji] of the theory under GFC’s ζi in the presence of the
external sources Ji (following the Senjanovic procedure (Gitman and Tyutin, 1990;
Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in press; Kulshreshtha
et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Senjanovic, 1976) for a theory
possessing a set of second-class constraints, appropriate for our theory described
by the action S1 considered under the GFC’s: ζi(12) Gitman and Tyutin, 1990;
Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in press; Kulshreshtha
et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Senjanovic, 1976) ) as follows:

Z1[Ji] =
∫

[dµ] exp

[
i

∫
d2σ

[
Ji�

i + 	µ(∂τXµ) + π0(∂τA0) (17a)

+E(∂τA1) + pu1 (∂τu1) + pu2 (∂τu2) + pu3 (∂τu3) − HT
1

]]
(17b)

where the phase space variables of the theory are �i ≡ (Xµ,A0, A1, u1, u2, u3)
with the corresponding respective canonical conjugate momenta:
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	i ≡ (	µ, π0, E, pu1 , pu2 , pu3 ). The functional measure [dµ] of the generating
functional Z1[Ji] under the GFC’s ζi is obtained using Eqs. (9), (11) and (13) as

[dµ] = [4Mδ′′(σ − σ ′)δ′(σ − σ ′)δ2(σ − σ ′)][dXµ][dA0][dA1][du1][du2][du3]

× [d	µ][dπ0][dE][dpu1 ][dpu2 ][dpu3 ] · δ[(π0) ≈ 0] · δ[(	 · X′)

≈ 0] · δ[[	2 + (E2 + T 2)(X′)2] ≈ 0] · δ[(E′) ≈ 0] · δ[(X2)

≈ 0] · δ[(	′) ≈ 0] · δ[(A1) ≈ 0] · δ[(A0) ≈ 0] (18)

The Hamiltonian and path integral quantization of the theory described by the
action S1 under the GFC’s ζi is now complete. In the next section we study this
theory in the presence of the scalar dilation field.

3. THE ACTION IN THE PRESENCE OF A SCALAR DILATION FIELD

The (bosonic) BING action describing the propagation of a D1-brane in a
d-dimensional flat background in the presence of a scalar dilation field ϕ is defined
by (Abou and Hull, 1997; Aganagic et al., 1997; Brink and Henneaux, 1988; de
Alwis and Sato, 1996; Johnson, 2000; Kulshreshtha and Kulshreshtha, 2003a,b,
in press; Luest and Theisen, 1989; Maharana, 2000; Mukhi, 1997; Schmidhuber,
1996; Tseytlin, 1996):

S2 =
∫

L2d
2σ (19a)

L2 = [e−ϕL1] (19b)

= [−T e−ϕ][(Ẋ · X′)2 − (Ẋ)2(X′)2 − f 2]
1
2 (19c)

= [−T e−ϕ]L (19d)

The canonical momenta obtained from L2 are

	µ := ∂L2

∂(∂τXµ)
= [−T e−ϕ/L][(Ẋ · X′)X′µ − (X′)2Ẋµ] (20a)

π0 := ∂L2

∂(∂τA0)
= 0 (20b)

E(≡ π1) := ∂L2

∂(∂τA1)
= [T e−ϕ/L]f (20c)

π := ∂L2

∂(∂τϕ)
= 0 (20d)

Here π is the momentum canonically conjugate to the dilation field ϕ. The theory
described by S2 is thus seen to possess four primary constraints:

χ1 = π ≈ 0 (21a)
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χ2 = π0 ≈ 0 (21b)

χ3 = (	 · X′) ≈ 0 (21c)

χ4 = [	2 + (E2 + T 2e−2ϕ)(X′)2] ≈ 0 (21d)

The canonical Hamiltonian density corresponding to L2 is

Hc
2 = [

	µ(∂τXµ) + π0(∂τA0) + E(∂τA1) + π (∂τϕ) − L2
]

(22a)

= [EA′
0] (22b)

After incorporating the primary constraints of the theory in the canonical
Hamiltonian density of the theory Hc

2 with the help of Lagrange multiplier fields
v1(τ, σ ), v2(τ, σ ), v3(τ, σ ), and v4(τ, σ ), which we treat as dynamical, the total
Hamiltonian density of the theory could be written as

HT
2 = [Hc

2 + v1χ1 + v2χ2 + v3χ3 + v4χ4] (23a)

= [EA′
0 + v1π + v2π

0 + v3(	 · X′)

+ v4[	2 + (E2 + T 2e−2ϕ)(X′)2]] (23b)

The momenta canonically conjugate to v1, v2, v3, and v4 will be denoted respec-
tively by pv1 , pv2 , pv3 , and pv4 . The Hamiltons equation of motion obtained from
the total Hamiltonian:

HT
2 =

∫
HT

2 dσ (24)

e.g. for the closed strings with periodic BC’s are

+∂τX
µ = ∂HT

2

∂	µ

= [v3X
′µ + 2	µv4] (25a)

−∂τ	
µ = ∂HT

2

∂Xµ

= −∂σ [v3	
µ + 2X′µ(E2 + T 2e−2ϕ)v4] (25b)

+∂τA0 = ∂HT
2

∂π0
= v2 (25c)

−∂τπ
0 = ∂HT

2

∂A0
= [−E′] (25d)

+∂τA1 = ∂HT
2

∂E
= [A′

0 + 2E(X′)2v4] (25e)

−∂τE = ∂HT
2

∂A1
= 0 (25f)

+∂τϕ = ∂HT
2

∂π
= v1 (25g)
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−∂τπ = ∂HT
2

∂ϕ
= [−2T 2e−2ϕ(X′)2v4] (25h)

+∂τ v1 = ∂HT
2

∂pv1

= 0 (25i)

−∂τpv1 = ∂HT
2

∂v1
= π (25j)

+∂τ v2 = ∂HT
2

∂pv2

= 0 (25k)

−∂τpv2 = ∂HT
2

∂v2
= π0 (25l)

+∂τ v3 = ∂HT
2

∂pv3

= 0 (25m)

−∂τpv3 = ∂HT
2

∂v3
= [	 · X′] (25n)

+∂τ v4 = ∂HT
2

∂pv4

= 0 (25o)

−∂τpv4 = ∂HT
2

∂v4
= [	2 + (E2 + T 2e−2ϕ)(X′)2] (25p)

These are the equations of motion of the theory that preserve the constraints of
the theory in the course of time. Demanding that the primary constraint χ2 be
preserved in the course of time one obtains a secondary constraint

χ5 = {
χ2,HT

2

}
P

= [E′] ≈ 0 (26)

The presentation of χ5 for all time gives rise to another secondary constraint.
Similarly the preservation of χ2, χ3, and χ4 for all time does not yield any further
constraints. The theory is thus seen to possess only five constraints χ1, χ2, χ3, χ4,
and χ5. Also the first-order Lagrangian density of the theory (to be used later) is

LIO
2 = [

	µ(∂τXµ) + π0(∂τA0) + E(∂τA1) + π (∂τϕ) + pv1 (∂τ v1)

+pv2 (∂τ v2) + pv3 (∂τ v3) + pv4 (∂τ v4) − HT
2

]
(27a)

= [	2 + (E2 − T 2e−2ϕ)(X′)2]v4 (27b)

The matrix of the Poisson brackets of the constraints χi is seen to be a singular
matrix implying that the set of constraints χi is first-class (Kulshreshtha and
Kulshreshtha, 2003a,b, 2004; Gitman and Tyutin, 1990; Senjanovic, 1976;
Kulshreshtha and Kulshreshtha, 2002a,b; Kulshreshtha et al., 1993a, 1994a,
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1993b, 1994b; Kulshreshtha and Kulshreshtha, 1993c; Kulshreshtha et al.,
1993d,e; Dirac, 1950) and that the theory described by S2 is a gauge-invariant
(GI) theory. It is in fact, well known to posses three local gauge symmetries
given by the two-dimensional WS reparametrization invariance (WSRI) and
the Weyl invariance (WI) (Abou and Hull, 1997; Aganagic et al., 1997; Brink
and Henneaux, 1988; de Alwis and Sato, 1996; Johnson, 2000; Kulshreshtha
and Kulshreshtha, 2003a,b, in press; Luest and Theisen, 1989; Maharana, 2000;
Mukhi, 1997; Schmidhuber, 1996; Tseytlin, 1996).

To study the Hamiltonian and path integral formulations of this GI theory
under GFC’s, we convert the set of first-class constraints of the theory χi into a set
of second-class constraints, by imposing arbitrarily, some additional constraints
on the system called the GFC’s or the gauge constraints. For this purpose, we
could choose, for example, the set of GFC’s (Dirac, 1950; Gitman and Tyutin,
1990; Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b; Kulshreshtha
et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976):

χ6 = ρ1 = X2 ≈ 0 (28a)

χ7 = ρ2 = 	′ ≈ 0 (28b)

χ8 = ρ3 = A1 ≈ 0 (28c)

χ9 = ρ4 = A0 ≈ 0 (28d)

χ10 = ρ5 = ϕ ≈ 0 (28e)

Corresponding to this choice of GFC’s, the total set of constraints of the theory
under which the quantization of the theory could, e.g., be studied becomes

χ1 = π ≈ 0 (29a)

χ2 = π0 ≈ 0 (29b)

χ3 = (	 · X′) ≈ 0 (29c)

χ4 = [	2 + (E2 + T 2e−2ϕ(X′)2] ≈ 0 (29d)

χ5 = E′ ≈ 0 (29e)

χ6 = ρ1 = X2 ≈ 0 (29f)

χ7 = ρ2 = 	′ ≈ 0 (29g)

χ8 = ρ3 = A1 ≈ 0 (29h)

χ9 = ρ4 = A0 ≈ 0 (29i)

χ10 = ρ5 = ϕ ≈ 0 (29j)
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We now calculate the matrix Rαβ(:= {χα, χβ}P ) of the Poisson brackets of the
constraints χi . The nonvanishing elements of the matrix Rαβ are obtained as

R14 = −R41 = [2T 2e−2ϕ(X′)2] δ (σ − σ ′) (30a)

R1,10 = −R10,1 = [−1] δ(σ − σ ′) (30b)

R29 = −R92 = [−1] δ(σ − σ ′) (30c)

R36 = −R63 = [−2X′] δ(σ − σ ′) (30d)

R37 = −R73 = [−	] δ′′ (σ − σ ′) (30e)

R46 = −R64 = [−4	] δ(σ − σ ′) (30f)

R47 = −R74 = [−2(X′)(E2 + T 2e−2ϕ)] δ′′ (σ − σ ′) (30g)

R48 = −R84 = [−2E(X′)2] δ(σ − σ ′) (30h)

R58 = −R85 = [−1] δ(σ − σ ′) (30i)

The matrix Rαβ is seen to be nonsingular implying that the corresponding set of
constraints χi is a set of second-class constraints (Dirac, 1950; Gitman and Tyutin,
1990; Kulshreshtha and Kulshreshtha, in press, 2002a,b, 2003a,b; Kulshreshtha
et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976). The determinant of the matrix
Rαβ is given by:

[‖ det(Rαβ)‖]
1
2 = [4Rδ′′(σ − σ ′) δ′ (σ − σ ′) δ3(σ − σ ′)] (31a)

R = [	2 − (E2 + T 2e−2ϕ)(X′)2] (31b)

The nonvanishing elements of the inverse of the matrix Rαβ (i.e., the elements of
the matrix (R−1)αβ) are:

(R−1)1,10 = −(R−1)10,1 = δ (σ − σ ′) (32a)

(R−1)29 = −(R−1)92 = δ (σ − σ ′) (32b)

(R−1)36 = −(R−1)63 = [−(X′)(E2 + T 2e−2ϕ)/(2R)]δ (σ − σ ′) (32c)

(R−1)37 = −(R−1)73 = [	/(2R)]|σ − σ ′| (32d)

(R−1)46 = −(R−1)64 = [	/(4R)] δ (σ − σ ′) (32e)

(R−1)47 = −(R−1)74 = [−(X′)/(4R)]|σ − σ ′| (32f)

(R−1)56 = (R−1)65 = [	E(X′)2/(4R)] ε (σ − σ ′) (32g)

(R−1)57 = (R−1)75 = [−E(X′)(X′)2/(4R)]|σ − σ ′|
× ε (σ − σ ′) δ (σ − σ ′) (32h)

(R−1)58 = (R−1)85 = (−1/2)ε (σ − σ ′) (32i)
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(R−1)6,10 = −(R−1)10,6 = [−	(X′)2(T 2e−2ϕ)/(2R)] δ (σ − σ ′) (32j)

with ∫
R(σ, σ ′′)R−1(σ ′′, σ ′)dσ ′′ = 110×10 δ(σ − σ ′) (33)

Now following the standard Dirac quantization procedure in the Hamil-
tonian formulation (Dirac, 1950; Gitman and Tyutin, 1990; Kulshreshtha and
Kulshreshtha, 2004, 2002a,b; Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b;
Senjanovic, 1976), the nonvanishing EWST Dirac brackets of the theory in the
presence of a scalar dilation field described by the action S2 under the GFC’s ρi

could again be obtained after a lengthy but straightforward calculation (Dirac,
1950) and are omitted here again for the sake of brevity.

As explained in the previous section, the nonvanishing DB’s involving the
gauge field A1, in the above results, would become strongly zero on the reduced
hypersurface of the constraints of the theory described by the action S2 (Gitman
and Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in
press; Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b, 1993d,e; Senjanovic,
1976).

The problem of operator ordering occurring here while making a transition
from the EWST Dirac brackets to the corresponding EWST commutation rela-
tions can be resolved here as explained in Section 3, by demanding that all the
string fields and momenta of the theory are Hermitian operators and that all the
canonical commutation relations be consistent with the hermiticity of these oper-
ators (Gitman and Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c, 2002a,b,
2003a,b, in press; Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b, 1993d,e;
Maharana, 1983; Senjanovic, 1976).

In the path integral formulation, the transition to quantum theory is made
again by writing the vacuum to vacuum transition amplitude for the theory,
called the generating functional Z2[Ji] of the theory, following again the
Senjanovic procedure for a theory possessing a set of second-class constraints
(Dirac, 1950; Gitman and Tyutin, 1990; Kulshreshtha and Kulshreshtha, in press,
2002a,b, 2003a,b; Kulshreshtha et al., 1993a,b,c,d,e, 1994a,b; Senjanovic, 1976),
appropriate for our theory described by the action S2 considered under the GFC’s
ρi , in the presence of the external sources Ji as follows (Gitman and Tyutin, 1990;
Kulshreshtha and Kulshreshtha, 1993c, 2002a,b, 2003a,b, in press; Kulshreshtha
et al., 1993a, 1994a, 1993b,1994b, 1993d,e; Senjanovic, 1976):

Z2[Ji] =
∫

[dµ] exp[i
∫

d2σ
[
Ji�

i + 	µ(∂τXµ) + π0(∂τA0) (34a)

+E(∂τA1) + π (∂τϕ) + pv1 (∂τ v1) + pv2 (∂τ v2) + pv3 (∂τ v3)

+pv4 (∂τ v4) − HT
2

]]
(34b)



Hamiltonian and Path Integral Formulations 601

where the phase space variables of the theory are �i ≡
(Xµ,A0, A1, ϕ, v1, v2, v3, v4) with the corresponding respective canonical
conjugate momenta: 	i ≡ (	µ, π0, E, π, pv1 , pv2 , pv3 , pv4 ). The functional
measure [dµ] of the generating functional Z2[Ji] under the GFC’s ρi is obtained
using Eqs. (27), (29), and (31) as

[dµ] = [4Mδ′′(σ − σ ′)δ′(σ − σ ′)δ3(σ − σ ′)]

× [dXµ][dA0][dA1][dϕ][dv1][dv2][dv3][dv4]

× [d	µ][dπ0][dE][dπ ][dpv1 ][dpv2 ][dpv3 ][dpv4 ] · δ[(π )

≈ 0] · δ[(π0) ≈ 0]δ(	 · X′) ≈ 0] · [[	2 + (E2

+ T 2e−2∗ϕ

)(X′)2] ≈ 0] · δ[(E′) ≈ 0] · δ[(X2) ≈ 0] · δ[(	′)

≈ 0] · δ[(A1) ≈ 0] · δ[(A0) ≈ 0] · δ[(ϕ) ≈ 0] (35)

The Hamiltonian and path integral quantization of the theory described by the
action S2 under the GFC’s ρi is now complete.

4. SUMMARY AND DISCUSSION

In this work we have studied the Hamiltonian and path integral quantization
of the BING action describing the D1-brane action with and without a scalar
dilation field ϕ under appropriate GFC·s in the absence of BC‘s, using the instant-
form of dynamics on the hyperplanes of the WS defined by the hyperplanes:
WS-time = σ 0 = τ = constant. The DBING D1-brane action has been studied
by the present authors (Kulshreshtha and Kulshreshtha, in press, 2003a) and for
further details we refer the reader to Kulshreshtha and Kulshreshtha (in press,
2003a).

The problem of operator ordering occurring here while making a transition
from EWST Dirac brackets to the corresponding EWST commutation relations
can be resolved here as explained in Section 3, by demanding that all the
string fields and momenta of the theory are Hermitian operators and that all
the canonical commutation relations be consistent with the hermiticity of these
operators (Gitman and Tyutin, 1990; Kulshreshtha and Kulshreshtha, 1993c,
2002a,b, 2003a,b, in press; Kulshreshtha et al., 1993a, 1994a, 1993b, 1994b,
1993d,e; Maharana, 1983; Senjanovic, 1976).

It is important to mention here that in our work we have not imposed any
boundary conditions (BC’s) for the open and closed strings separately. There are
two ways to take these BC’s into account: (a) One way is to impose them directly in
the usual way for the open and closed strings separately in an appropriate manner
(Abou and Hull, 1997; Aganagic et al., 1997; Brink and Henneaux, 1988; de Alwis
and Sato, 1996; Johnson, 2000; Kulshreshtha and Kulshreshtha, 2003a,b, in press;
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Luest and Theisen, 1989; Maharana, 2000; Mukhi, 1997; Schmidhuber, 1996;
Tseytlin, 1996), (b) an alternative second way (Chu and Ho, 2000; Sheikh-Jabbari
and Shirzad, 1999) is to treat these BC’s as the Dirac primary constraints (Chu and
Ho, 2000; Sheikh-Jabbari and Shirzad, 1999) and study the theory accordingly
(Chu and Ho, 2000; Sheikh-Jabbari and Shirzad, 1999). At present our related
work is underway and would be reported later.
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